Parallel Cut-and-Solve: A Method for Solving Mixed-Integer Programs Utilizing Distributed Computational Power

Sharlee Climer and Michael Chan
University of Missouri-St. Louis
Mixed-integer linear programs (MIPs)

- A particular format for defining a problem
 - Many combinatorial problems can be cast as MIPs
- NP-hard in general
 - Some relatively small instances have not been solved
 - Yet, great progress has been made in field
 - Instances with billions of variables have been solved
 - Success due to ability to prune away most of the solution space, while preserving optimality

Only certain types of well-studied problems have experienced these successes
Solving NP-Hard Problems

Approximate methods
• Most common
• Many approaches e.g.:
 • Statistical-based
 • Machine learning
 • Bayesian modeling
 • Network-based

Exact methods
• Exhaustive enumeration
• MIP search strategies
 • Cutting Planes
 • Branch & Bound
 • Branch & Cut
 • Cut & Solve
Exhaustive Enumeration

- Number of combinations increases exponentially
- Possible to test every pair
 - Given efficient algorithm and adequate computational resources

<table>
<thead>
<tr>
<th>Size</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td># Combinations</td>
<td>n</td>
<td>$\binom{n}{2} = \frac{n^2 - n}{2}$</td>
<td>$\binom{n}{3} = \frac{n^3 - 3n^2 + 2n}{6}$</td>
</tr>
<tr>
<td>$n = 1,000,000$</td>
<td>1,000,000</td>
<td>499,999,500,000</td>
<td>1.7×10^{17}</td>
</tr>
</tbody>
</table>

$\binom{n}{k} = \frac{n!}{k!(n-k)!}$
Traveling Salesman Problem (TSP)

- Well-studied combinatorial problem
- Given a set of cities and the cost of travel between them, what is the least costly way to travel to all of them and return home?
120-city TSP

5.6 x 10^196 possible routes!

Estimated 3.3 x 10^80 subatomic particles in the known universe

85,900-city TSP
3,689,362,050 variables (integrated circuit)

24,978-city TSP
311,937,753 variables (Sweden)
MIP formulation

- MIP format includes:
 - Objective function
 - Constraints

- All must be linear!
 - \(y = mx + b \)
- May be inequality
 - \(y \leq mx + b \)
Example with 2 variables

Minimize
Z = -11x + 4y

Subject to:
3x + 8y <= 40
11x - 8y <= 16
x, y >= 0

Integrality not required, so this is just a linear program (LP)
• Easy to solve
Objective function:

Minimize $Z = -11x + 4y$

$y = \frac{11}{4} x + \frac{Z}{4}$

Family of parallel lines with slope of $\frac{11}{4}$ and unknown y-intercept
Optimal solution

\begin{align*}
x &= 4 \\
y &= 7/2 \\
Z &= -30
\end{align*}

Optimal solution is always on a vertex for LPs
Minimize
\[Z = -11x + 4y \]

Subject to:
\[3x + 8y \leq 40 \]
\[11x - 8y \leq 16 \]
\[x, y \geq 0 \]
\[x, y \text{ integer} \]

Optimal solution
\[x = 3 \]
\[y = 3 \]
\[Z = -21 \]
Increase number of variables

- 3 variables
 - Each constraint is a plane
 - All feasible integral solutions are contained within (or on) polyhedron
 - Objective function is also a plane

- Many variables
 - High-dimensional space
 - Convex polyhedron
 - Defined by hyperplanes
 - Optimal solution where objective hyperplane intersects last integral solution
Relaxations solved during search

- Common to relax integrality
 - Solve LP

- Simplex method
 - Move along edges in direction that improves the objective function value
 - Reach optimal solution
Cutting Planes

Relaxed solution removed
- No integral solutions are removed
- Optimality is ensured

Search path can be prohibitively long
- Cutting planes remove tiny slice of search space
 - Must avoid removing integral solutions
 - Effective cutting planes can be difficult to identify
Incumbent
Branch & bound

- Maintain incumbent solution
 - Feasible solution
 - Not necessarily optimal
 - Update when a better feasible solution is encountered
- Spawn child nodes
 - Each valid value for variable
- Tree is explored
- At each node a relaxation is solved
 - If relaxation is smaller than incumbent, prune subtree
 - (Assuming maximization objective)
 - Optimality is not compromised
- Sensitive to early decisions of variables to spawn and search directions
Incumbent

BRANCH & CUT
Branch & Cut

- Combination strategy
 - Branch & bound tree with cutting planes applied
 - Tightens bounds and improves pruning
- Padberg & Renaldi introduced in the 1980's
 - Ability to solve large-scale MIPs was born
- Primary research focus on separation algorithms
 - Determine cutting planes
- State-of-the-art commercial solvers
 - IBM's Cplex, Gurobi
 - Free academic/nonprofit research license
- Not suitable for massive parallelization
 - Application of cutting planes is sequential process
 - Memory exhaustion frequently occurs for difficult problems
Incumbent
Cut & solve

- Solve relaxation
- Cut away a chunk of the solution space
 - Include integral solutions
 - Use *piercing* cut
 - Solve this small problem optimally
 - Provides *anytime* solution
 - Update incumbent
- Solve relaxation for remaining solution space
- Repeat until limits cross
 - Current incumbent is optimal
Cut & solve

- Cut & solve was featured in Boris Goldengorin's plenary lecture
 - 2010 American Conference on Applied Mathematics

- Has outperformed IBM's Cplex in more than a dozen publications
 - All used Cplex to solve subproblems

- Straight Cplex is faster for easier problems

- Reasons for cut & solve's success for tough problems:
 - Never applies branch & cut to entire problem
 - Exploits branch & cut for moderate problems
 - Amplifies pruning power

Bonus: Independent sparse problems can be spawned as quickly as relaxations are solved
• Utilization of massive resources available
• Branch-and-Bound can be parallelized
 • Doesn't leverage cutting plane technology

• Cut-and-Solve holds promise
 • Never before attempted massive parallelization