Tensor Algebra Computation: Implementation and Applications

Organizers:

Alfio Lazzaro (University of Zurich, Switzerland)
Edgar Solomonik (University of Illinois at Urbana-Champaign, USA)
Jürg Hutter (University of Zurich, Switzerland)

PASC 2018: Basel, Switzerland

July 3, 2018
A tensor is a multidimensional collection of elements

- the number of modes/ways/indices of a tensor is referred to as its order
- the sizes of the ranges of the modes is referred to as its dimensions
- tensors may be sparse, block-sparse, or symmetric much like matrices
- unfolding a tensor corresponds to combining modes, e.g. \(v = \text{vec}(\mathbf{W}) \)
- transposing a tensor corresponds to reordering its modes

Tensor contractions are the quintessential tensor algebra primitives

- generalize vector inner/outer products, matrix-vector products, matrix-matrix products, tensor products, Kronecker products
- reduce to matrix-matrix products after tensor transposition
- conveniently expressible with Einstein summation notation, e.g. tensor-times matrix: \(c_{ijk} = a_i^l b_{ljk} := \sum_l a_{il} b_{ljk} \)
Tensor algebra applications

- Applications of tensor-times-matrix (TTM)
 - tensor decompositions
 - finite element methods (FEM) for 3D problems

- Data analysis via tensor decompositions
 - computer vision and graphics: 2D image \(\otimes \) angle \(\otimes \) time
 - machine learning: latent variable models, high-order statistics, recommender systems, neural networks

- Electronic structure calculations
 - high-order dense contractions in post-Hartree-Fock (post-HF) methods
 - medium-order sparse/block-sparse contractions for low-scaling post-HF

- Numerical relativity

- Quantum circuit simulation (very high order contractions)

- Tensor networks (DMRG) for condensed matter physics
Minisymposium speakers

Edgar Solomonik (University of Illinois at Urbana-Champaign, USA)
- *Parallel Tensor Computations in Python or C++ Using Cyclops*
- Synopsis: *distributed dense/sparse* tensor contraction library and application to *post-HF methods and tensor decompositions*

P. Sadayappan (Ohio State University, USA)
- *Tensor Transposition and Contraction on GPUs*
- Synopsis: *GPU dense* tensor contraction library and application to high-accuracy *post-HF methods*

Alfio Lazzaro (University of Zurich, Switzerland)
- *Extending the DBCSR Library to Sparse Tensor Linear Algebra for Electronic Structure Methods beyond Density Functional Theory*
- Synopsis: *distributed block-sparse* library and application to *low-scaling post-HF methods*

Saman Amarasinghe (Massachusetts Institute of Technology, USA)
- *The Tensor Algebra Compiler*
- Synopsis: automatic generation of *shared-memory dense/sparse/block-sparse* tensor algebra kernels and applications
Parallel Tensor Computations in Python or C++ Using Cyclops

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

PASC 2018

July 3, 2018

Ł P N A @ CS @ Illinois
A library for parallel tensor computations

Cyclops Tensor Framework (github.com/cyclops-community/ctf)

- distributed-memory symmetric/sparse/dense tensor objects

 Matrix<int> **A**(n, n, AS|SP, **World**(MPI_COMM_WORLD));
 Tensor<float> **T**(order, is_sparse, dims, syms, ring, world);
 T.read(...); T.write(...); T.slice(...); T.permute(...);

- parallel contraction/summation of tensors

  ```
  C["ij"] = A["ik"]*B["kj"];    // matmul
  C["ijl"] += A["ikl"]*B["kjl"]; // batched matmul
  Z["abij"] += V["ijab"];        // tensor transpose
  T["wxyz"] += U["uw"]*T["uxyz"]; // TTM
  T["abij"] = T["abij"]*D["abij"]; // Hadamard product
  S["ii"] = v["i"];              // S = diag(v)
  v["i"] += S["ii"];             // v += diag(S)
  M["ij"] += Function<>([](double x){ return 1/x; })(v["j"])�
  ```

- ~2000 commits since 2011, open source since 2013
Electronic structure calculations with cyclops

Extracted from **Aquarius** (lead by Devin Matthews)
https://github.com/devinamatthews/aquarius

```plaintext
FMI["mi"] += 0.5*WMNEF["mnef"]*T2["efin"];
WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T2["efij"];
FAE["ae"] -= 0.5*WMNEF["mnef"]*T2["afmn"];
WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T2["afin"];

Z2["abij"] = WMNEF["ijab"];
Z2["abij"] += FAE["af"]*T2["fbij"];
Z2["abij"] -= FMI["ni"]*T2["abnj"];
Z2["abij"] += 0.5*WABEF["abef"]*T2["efij"];
Z2["abij"] += 0.5*WMNIJ["mnij"]*T2["abmn"];  
Z2["abij"] -= WAMEI["amei"]*T2["ebmj"]; 
```

- CTF has been integrated with **QChem**, **VASP (CC4S)**, and **PySCF**
- Is also being used for other applications, e.g. by IBM+LLNL collaboration to perform 49-qubit quantum circuit simulation
Electronic structure calculations with Cyclops

CCSD up to 55 (50) water molecules with cc-pVDZ

CCSDT up to 10 water molecules with cc-pVDZ

compares well to **NWChem** (up to 10x speed-ups for CCSDT)
MP3 method

Tensor<> Ea, Ei, Fab, Fij, Vabij, Vijab, Vabcd, Vijkl, Vaibj;
... // compute above 1-e an 2-e integrals

Tensor<> T(4, Vabij.lens, *Vabij.wrld);
T["abij"] = Vabij["abij"];

divide_EaEi(Ea, Ei, T);

Tensor<> Z(4, Vabij.lens, *Vabij.wrld);
Z["abij"] = Vijab["ijab"];
Z["abij"] += Fab["af"]*T["fbij"];
Z["abij"] -= Fij["ni"]*T["abnj"];
Z["abij"] += 0.5*Vabcd["abef"]*T["efij"];
Z["abij"] += 0.5*Vijkl["mnij"]*T["abmn"];
Z["abij"] += Vaibj["amei"]*T["ebmj"];

divide_EaEi(Ea, Ei, Z);

double MP3_energy = Z["abij"]*Vabij["abij"];
Sparse MP3 code

Strong and weak scaling of sparse MP3 code, with

(1) dense V and T
(2) sparse V and dense T
(3) sparse V and T

Strong scaling of MP3 with $no=40$, $nv=160$

- Dense
- 10% sparse*dense
- 10% sparse*sparse
- 1% sparse*dense
- 1% sparse*sparse
- .1% sparse*dense
- .1% sparse*sparse

Weak scaling of MP3 with $no=40$, $nv=160$

- Dense
- 10% sparse*dense
- 10% sparse*sparse
- 1% sparse*dense
- 1% sparse*sparse
- .1% sparse*dense
- .1% sparse*sparse
Custom tensor element types

Cyclops permits arbitrary element types and custom functions

- CombBLAS/GraphBLAS-like functionality
- See examples for SSSP, APSP, betweenness centrality, MIS, MIS-2
- Functionality to handle serialization of pointers within user-defined types is under development
- Block-sparsity via sparse tensor (local) of dense tensors (parallel)

```cpp
// Define Monoid tmon to perform matrix summation as addition ...

Matrix< Matrix<> > C(nblk, nblk, SP, self_world, tmon);

C["ij"] = Function< Matrix<> >((
    [](Matrix<> mA, Matrix<> mB){
        Matrix<> mC(mA.nrow, mB.ncol);
        mC["ij"] += mA["ik"]*mB["kj"];
        return mC;
    }
    )(A["ik"], B["kj"]);
Symmetry and sparsity by cyclicity

for sparse tensors, a cyclic layout provides a load-balanced distribution
Cyclops uses nested parallel matrix multiplication variants

1D variants
- perform a different matrix-vector product on each processor
- perform a different outer product on each processor

2D variants
- perform a different inner product on each processor
- scale a vector on each processor then sum

3D variants
- perform a different scalar product on each processor then sum
- can be achieved by nesting 1D+1D+1D or 2D+1D or 1D+2D

All variants are blocked in practice, naturally generalized to sparse matrix products
Preserving symmetric-packed layout using cyclic distribution constrains possible tensor blockings.

Subdivision into more blocks than there are processors (virtualization)
Transitions between contractions require redistribution and refolding

- 1D/2D/3D variants naturally map to 1D/2D/3D processor grids
- Initial tensor distribution is oblivious of contraction
  - by default each tensor distributed over all processors
  - user can specify any processor grid mapping
- Global redistribution done by one of three methods
  - reassign tensor blocks to processors (easy+fast)
  - reorder and reshuffle data to satisfy new blocking (fast)
  - treat tensors as sparse and sort globally by function of index
- Matricization/transposition is then done locally
  - dense tensor transpose done using HPTT (by Paul Springer)
  - sparse tensor converted to CSR sparse matrix format
Local summation and contraction

- For contractions, local summation and contraction is done via BLAS, including **batched GEMM**
- Threading is used via OpenMP and threaded BLAS
- **GPU offloading** is available but not yet fully robust
- For sparse matrices, *MKL provides fast sparse matrix routines*
- To support **general (mixed-type, user-defined) elementwise functions**, manual implementations are available
- User can specify blocked implementation of their function to improve performance
Performance modeling and intelligent mapping

- **Performance models** used to select best contraction algorithm
- Based on *linear cost model for each kernel*

\[ T \approx \alpha S + \beta W + \nu Q + \gamma F \]

- Scaling of \( S, W, Q, F \) is a function of parameters of each kernel
- **Coefficients** for all kernels depend on compiler/architecture
- Linear regression with Tykhonov regularization used to select coefficients \( x^* \)
- Model training done by benchmark suite that executes various end-functionality for growing problem sizes, collecting observations of parameters in rows of \( A \) and execution timing in \( t \)

\[ x^* = \arg\min_x (||Ax - t||_2 + \lambda ||x||_2) \]
Using Cython, we have provided a Python interface for Cyclops

Follows `numpy.ndarray` conventions, plus sparsity and MPI execution

```
Z["abij"] += V["ijab"]; // C++
Z.i("abij") << V.i("ijab") // Python
W["mniij"] += 0.5*W["mnef"]*T["efij"]; // C++
W.i("mniij") << 0.5*W.i("mnef")*T.i("efij") // Python
```

```
einsum("mnef,efij->mniij",W,T) // numpy-style Python
```

Python interface is under active development, but is functional and available (DEMO)
Future/ongoing directions in Cyclops development

- General abstractions for tensor decompositions
- Concurrent scheduling of multiple contractions
- Fourier transforms along tensor modes
- Improvements to functionality and performance for linear algebra

Acknowledgements

- Devin Matthews (UT Austin), Jeff Hammond (Intel Corp.), James Demmel (UC Berkeley), Torsten Hoefler (ETH Zurich), Zecheng Zhang, Eric Song, Eduardo Yap, Linjian Ma (UIUC)
- Computational resources at NERSC, CSCS, ALCF, NCSA, TACC